

Physical-based deformable multibody tire model

LEVITOI closing seminar 12.12.2024

Is soil and tire deformation important?

Intro

Modeling strategies (tire, soil, and their interactions):

- Physical-based
 - FEM
 - DEM
 - Etc.
- Empirical-based
 - Pacejka
 - Assumptions (like rigidity)
 - Etc.

Current simulation possibilities (Physical-based)

Intro

Is something in between?

Speedily and limited

Quality and timely

Idea & Proof of Concept

The key difference: How and what kind of springs are used?

• Discretization scalability:

• Parameter minimization with "new spring"

Simple Matlab realization

Chrono Realization (Benchmark simulations)

RTF = <4 and <10 for 607 translational DoFs (on not a powerful laptop)

Realization for Full Vehicle

Deformable ground

Rigid ground

Parameter identification & Tire tests (provided by Nokian Tyres) (current work)

Future (soil experiments (provided by Roadmasters)

Special thanks again to our collaboration teams from:

- Nokian Tyres
- West Coast Road Masters Oy

Used pictures from

- M. Brennensthul et al. (2017/2024)
- F. Farroni et al. (2018)
- S. Tarkowski et al. (2022)
- A. Gallein et al. (2007)
- V. S. Swammy et al. (2023)
- H. M. Unjhawala et al. (2023)
- Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems. http://projectchrono.org. Accessed: 2024-12-12.

Thank you

